Correlated electron–nuclear dynamics of photoinduced water dissociation on rutile TiO2 (2024)

  • Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article CAS PubMed Google Scholar

  • Khan, S. U. M., Al-Shahry, M. & Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002).

    Article CAS PubMed Google Scholar

  • Hashimoto, K., Irie, H. & Fujishima, A. TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005).

    Article CAS Google Scholar

  • Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).

    Article CAS PubMed Google Scholar

  • Guo Q., Zhou C., Ma Z. & Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 31, 1901997 (2019).

  • Anpo, M. & Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal. 216, 505–516 (2003).

    Article CAS Google Scholar

  • Yin, W.-J., Wen, B., Zhou, C., Selloni, A. & Liu, L.-M. Excess electrons in reduced rutile and anatase TiO2. Surf. Sci. Rep. 73, 58–82 (2018).

    Article CAS Google Scholar

  • Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014).

    Article CAS PubMed Google Scholar

  • Bourikas, K., Kordulis, C. & Lycourghiotis, A. Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 114, 9754–9823 (2014).

    Article CAS PubMed Google Scholar

  • Kowalski, P. M., Camellone, M. F., Nair, N. N., Meyer, B. & Marx, D. Charge localization dynamics induced by oxygen vacancies on the TiO2(110) surface. Phys. Rev. Lett. 105, 146405 (2010).

    Article PubMed Google Scholar

  • Bikondoa, O. et al. Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5, 189–192 (2006).

    Article CAS Google Scholar

  • Wendt, S. et al. Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett. 96, 066107 (2006).

    Article CAS PubMed Google Scholar

  • Tan, S. et al. Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2(110)-1 × 1 surface. J. Am. Chem. Soc. 134, 9978–9985 (2012).

    Article CAS PubMed Google Scholar

  • Yang, W. et al. Effect of the hydrogen bond in photoinduced water dissociation: a double-edged sword. J. Phys. Chem. Lett. 7, 603–608 (2016).

    Article CAS PubMed Google Scholar

  • Tan, S. et al. Interfacial hydrogen-bonding dynamics in surface-facilitated dehydrogenation of water on TiO2(110). J. Am. Chem. Soc. 142, 826–834 (2020).

    Article CAS PubMed Google Scholar

  • Nakamura, R. & Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 126, 1290–1298 (2004).

    Article CAS PubMed Google Scholar

  • Wang, D., Sheng, T., Chen, J., Wang, H.-F. & Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 1, 291–299 (2018).

    Article CAS Google Scholar

  • Migani, A. & Blancafort, L. What controls photocatalytic water oxidation on rutile TiO2(110) under ultra-high-vacuum conditions? J. Am. Chem. Soc. 139, 11845–11856 (2017).

    Article CAS PubMed Google Scholar

  • Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article CAS Google Scholar

  • Rousseau, R., Glezakou, V.-A. & Selloni, A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat. Rev. Mater. 5, 460–475 (2020).

    Article CAS Google Scholar

  • Di Valentin, C. & Selloni, A. Bulk and surface polarons in photoexcited anatase TiO2. J. Phys. Chem. Lett. 2, 2223–2228 (2011).

    Article Google Scholar

  • Cheng, J., VandeVondele, J. & Sprik, M. Identifying trapped electronic holes at the aqueous TiO2 interface. J. Phys. Chem. C 118, 5437–5444 (2014).

    Article CAS Google Scholar

  • Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    Article CAS PubMed Google Scholar

  • Cheng, J. & Sprik, M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. J. Chem. Theory Comput. 6, 880–889 (2010).

    Article CAS PubMed Google Scholar

  • Liu, L.-M., Zhang, C., Thornton, G. & Michaelides, A. Structure and dynamics of liquid water on rutile TiO2(110). Phys. Rev. B 82, 161415 (2010).

    Article Google Scholar

  • Long, R., Fang, W.-H. & Prezhdo, O. V. Strong interaction at the perovskite/TiO2 interface facilitates ultrafast photoinduced charge separation: a nonadiabatic molecular dynamics study. J. Phys. Chem. C 121, 3797–3806 (2017).

    Article CAS Google Scholar

  • Cheng, C., Fang, W. H., Long, R. & Prezhdo, O. V. Water splitting with a single-atom Cu/TiO2 photocatalyst: atomistic origin of high efficiency and proposed enhancement by spin selection. JACS Au 1, 550–559 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Pisana, S. et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007).

    Article CAS PubMed Google Scholar

  • Che, L. et al. Breakdown of the Born-Oppenheimer approximation in the F + o-D2→DF + D reaction. Science 317, 1061–1064 (2007).

    Article PubMed Google Scholar

  • Lian, C., Guan, M., Hu, S., Zhang, J. & Meng, S. Photoexcitation in solids: first-principles quantum simulations by real-time TDDFT. Adv. Theory Simul. 1, 1800055 (2018).

    Article Google Scholar

  • You P., Chen D., Lian C., Zhang C. & Meng S. First-principles dynamics of photoexcited molecules and materials towards a quantum description. WIREs Comput. Mol. Sci. 11, e1492 (2020).

  • Carneiro, L. M. et al. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nat. Mater. 16, 819–825 (2017).

    Article CAS PubMed Google Scholar

  • Diebold, U. Perspective: a controversial benchmark system for water-oxide interfaces: H2O/TiO2(110). J. Chem. Phys. 147, 040901 (2017).

    Article PubMed Google Scholar

  • Wen, B., Calegari Andrade, M. F., Liu, L. M. & Selloni, A. Water dissociation at the water-rutile TiO2(110) interface from ab initio-based deep neural network simulations. Proc. Natl Acad. Sci. USA 120, e2212250120 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Wang, Z. T. et al. Probing equilibrium of molecular and deprotonated water on TiO2(110). Proc. Natl Acad. Sci. USA 114, 1801–1805 (2017).

    Article CAS PubMed PubMed Central Google Scholar

  • Li, Y.-F. & Selloni, A. Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. ACS Catal. 6, 4769–4774 (2016).

    Article CAS Google Scholar

  • Burns, P. C. & Hawthorne, F. C. Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals. Can. Mineral. 34, 1089–1105 (1996).

    CAS Google Scholar

  • Fu, K. M. et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 256404 (2009).

    Article PubMed Google Scholar

  • Di Valentin, C., Pacchioni, G. & Selloni, A. Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. Phys. Rev. Lett. 97, 166803 (2006).

    Article PubMed Google Scholar

  • Wang, Z. et al. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. J. Am. Chem. Soc. 137, 9146–9152 (2015).

    Article CAS PubMed Google Scholar

  • Sidiropoulos, T. P. H. et al. Probing the energy conversion pathways between light, carriers, and lattice in real time with attosecond core-level spectroscopy. Phys. Rev. X 11, 041060 (2021).

    CAS Google Scholar

  • Wagstaffe, M. et al. Photoinduced dynamics at the water/TiO2(101) interface. Phys. Rev. Lett. 130, 108001 (2023).

    Article CAS PubMed Google Scholar

  • Chen, X. et al. The formation time of Ti–O• and Ti–O•–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. J. Am. Chem. Soc. 139, 1830–1841 (2017).

    Article CAS PubMed Google Scholar

  • Kim, H. Y. et al. Attosecond field emission. Nature 613, 662–666 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Garcia, A. et al. SIESTA: recent developments and applications. J. Chem. Phys. 152, 204108 (2020).

    Article CAS PubMed Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article CAS PubMed Google Scholar

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article CAS Google Scholar

  • Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    Article PubMed Google Scholar

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article CAS Google Scholar

  • Correlated electron–nuclear dynamics of photoinduced water dissociation on rutile TiO2 (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Rueben Jacobs

    Last Updated:

    Views: 6211

    Rating: 4.7 / 5 (57 voted)

    Reviews: 88% of readers found this page helpful

    Author information

    Name: Rueben Jacobs

    Birthday: 1999-03-14

    Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

    Phone: +6881806848632

    Job: Internal Education Planner

    Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

    Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.